Postech Graduate Seminar Series 2022: Time-series Machine Learning in Manufacturing

Sunghee Yun

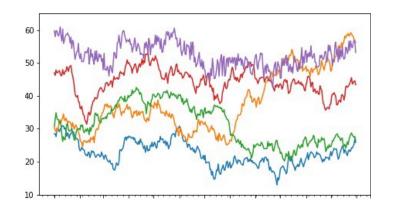
Head of Global R&D Gauss Labs

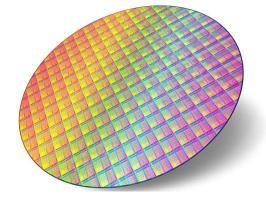
Today

- Why time-series machine learning in area of manufacturing AI?
- Machine learning (ML) algorithms for time-series data
 - what is time-series?
 - time-series learning
 - time-series anomaly detection
 - we can go further: uncertainty prediction of predictions
- Time-series learning applications in manufacturing
 - material measurement prediction
 - root cause analysis by anomaly detection
- Conclusion

Why time-series learning?

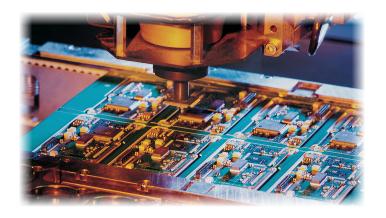
- (almost) all the data coming from manufacturing environment are time-series data
 - sensor data, sound data, process times, material measurement, images, yield, etc.
- sheer amount of time-series data is huge
 - peta-scale data per day in semiconductor manufacturing lines

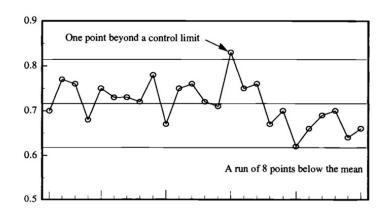




Why time-series learning?

- manufacturing application is about one of the following:
 - prediction of time-series values virtual metrology, yield prediction
 - anomaly detection on time-series data root cause analysis, yield analysis
 - classification of time-series values equipment anomaly alarms
 - process control with feedback advanced process control
 - process time estimation or prediction scheduling, dispatching





Machine Learning (ML) techniques for time-series data

Time-series data

• definition of times-series:

$$x:T \to \textbf{R}^n$$
 where $T = \{\ldots, t_{-2}, t_{-1}, t_0, t_1, t_2, \ldots\} \subseteq \textbf{R}$

ullet example: material measurements: when n=3

$$x(t) = \begin{bmatrix} \text{average_thickness}(t) \\ \text{refractory_index}(t) \\ \text{image_feature_size}(t) \end{bmatrix}$$

• for supervised learning, we define two time series

$$x:T\to \mathbf{R}^n$$
 and $y:T\to \mathbf{R}^m$

Time index

• time index does not have to be time index

more general defintion

$$x: T \to \mathbf{R}^n$$
 where $T = \{\ldots, s_{-2}, s_{-1}, s_0, s_1, s_2, \ldots\}$

where $\cdots < s_{-1} < s_0 < s_1 < \cdots$ defines an ordering (e.g., total order)

- ullet for example, x(s) and y(s) can represent the features and target values for a processed material, s, where they are not measured at the same time
- throughout this talk, though, we will assume use time-index

Supervised learning for time-series

• canonical problem:

predict
$$y(t_k)$$
 given $x(t_k), x(t_{k-1}), \ldots$ and $y(t_{k-1}), y(t_{k-2}), \ldots$

- lots of methods exist depending on assumptions of the data
 - for example, if we assume joint probability distribution of the data, we can have optimal solutions in certain criteria
- however, in this talk, we will not make such assumptions

Problem formulation

canonical problem defition:

minimize
$$\sum_{k=0}^K l(y(t_k), \hat{y}(t_k))$$
 subject to
$$\hat{y}(t_k) = g(x(t_k), x(t_{k-1}), \dots, y(t_{k-1}), y(t_{k-2}), \dots)$$

where $l: \mathbf{R}^m \times \mathbf{R}^m \to \mathbf{R}_+$ is loss function and $g: \mathbf{R}^n \times \mathbf{R}^n \times \cdots \times \mathbf{R}^m \times \mathbf{R}^m \times \cdots \to \mathbf{R}^m$

ullet we will use shortened notation for the predictor: $g:\cdot \to \mathbf{R}^m$

Error measures

- three typical error measures
 - root-mean-square-error (RMSE)

$$\mathbf{E} \|Y - \hat{Y}\|^2 \simeq \sqrt{\frac{1}{|\mathcal{K}|} \sum_{k \in \mathcal{K}} \|y(t_k) - \hat{y}(t_k)\|^2}$$

robust-root-mean-square-error (RRMSE)

$$\sup_{y \in \mathcal{Y}} \mathbf{E} \left(\|Y - \hat{Y}\|^2 \middle| Y = y \right)$$

- R-squared (R^2)

$$1 - \frac{\mathbf{E} \|Y - \hat{Y}\|^2}{\mathbf{E} \|Y - \mathbf{E} Y\|^2} \simeq 1 - \frac{\sum_{k \in \mathcal{K}} \|y(t_k) - \hat{y}(t_k)\|^2}{\sum_{k \in \mathcal{K}} \|y(t_k) - \bar{y}\|^2}$$

Machine learning (ML) solution candidates

- ullet ignore temporal dependency and try to predict $y(t_k)$ from $x(t_k)$
 - random forest
 - partial least squares
 - xgboost
 - deep neural network
- use sequential learning methods
 - recurrent neural network (RNN)
 - RNN w/ variational inference
 - Transformer-like approach using attention mechanism

Difficulties with manufacturing applications

- for many industrial (and manufacturing) applications
 - concept drifts exist:
 - * $p(x(t_k), x(t_{k-1}), \ldots)$ changes over time
 - * $p(y(t_k)|x(t_k), x(t_{k-1}), \dots, y(t_{k-1}), y(t_{k-2}), \dots)$ changes over time
 - hence, traditional off-line training doesn't work!
 - also, DL-type algorithms do not work, either, because
 - * the past data got stale very quickly
 - * hence, data hungry DP do not work
- these have been verified by many instances and trial-and-errors

One way to do this: prediction based on expert advice

- ullet assume p experts: $f_{i,k}:\cdot ullet {\sf R}^m \ (i=1,2,\ldots,p)$ for each time step, t_k
 - $f_{i,k}$ can be classical statistical learning, deep neural net, etc.
- ullet model predictor at time step k, $g_k: \cdot \to \mathbf{R}^m$ as weighted sum of experts:

$$g_k = w_{1,k} f_{1,k} + w_{2,k} f_{2,k} + \dots + w_{p,k} f_{p,k} = \sum_{i=1}^p w_{i,k} f_{i,k}$$

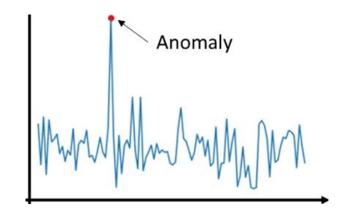
- algorithm:
 - predict $y(t_k)$, i.e., $\hat{y}(t_k) = g_k(\cdots)$ given current and past x's and past y's
 - observe $y(t_k)$
 - update weights $w_{1,k+1}, w_{2,k+1}, \ldots, w_{p,k+1}$ to form g_{k+1}
 - repeat these steps

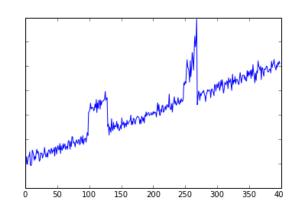
Real procedures

- data pre-processing, data wrangling
- feature extraction widely depends on type of data or applications
- feature selection widely depends on feature extraction methods or data itself
- modeling lots of choices
- model verification using hyper-parameter optimization (HPO)
- model improvement by retraining

Time-series anomaly detection

- ullet three types of anomaly detection: given time-series $x:T o {\bf R}^n$
 - point anomaly: find k such that $x(t_k)$ is considerably different from most of the data
 - segment anomaly: find k_1 and k_2 such that time-series segment $x(t_k)\big|_{k=k_1}^{k_2}$ is considerably different from most of the data
 - sequence anomaly: find $x_i: T \to \mathbf{R}$ such that it is considerably different from the other time-series (sequences), i.e., $x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n: T \to \mathbf{R}$





Time-series segment anomaly detection

- ullet one method investigated using classification: given $x(t_j)|_{j=k-l+1}^k$: $x(t_k), x(t_{k-1}), \ldots, x(t_{k-l+1})$ (segment of length l)
 - training:
 - * choose one classifier, c, and p feature extractors (or transformers): f_i
 - * extract p features by applying extractors: $f_i: x(t_j)|_{j=k-l+1}^k o y_{i,k}$
 - st train the classifier, c, with training data: $(y_{1,k},1)$, $(y_{2,k},2)$, . . . , $(y_{p,k},p)$,
 - inferencing:
 - * given new segment $x(t_j)|_{j=k-l+1}^k$, apply c to the extracted features.
 - * if they are substantically different from $(1,2,\ldots,p)$, declare it's anomaly
 - * here "difference" quantified by some anomaly score, e.g., KL divergence
 - -c can be any classifier including deep neural net, etc.

Other time-series anomaly detection methods

- using matrix factorizating similar to topic modeling
- classification and regression trees (CART)
- detection using forecasing
- clustering-based anomaly detection
- autoencoders

Go further: prediction of uncertainty of prediction

every point prediction is wrong!

$$- \operatorname{Prob}(\hat{Y}_k = Y_k) = 0$$

no matter how good error measures are

- more importantly, want to know how reliable our prediction is
- we call this "model uncertainty estimation (MUE)"

Model uncertainty estimation (MUE)

- multiple ways to measure this:
 - (1) probability of true value falling into an interval: for fixed a > 0

$$\mathbf{Prob}(|Y_k - \hat{Y}_k| < a) = \mathbf{Prob}(Y_k \in (\hat{Y}_k - a, \hat{Y}_k + a))$$

(2) predictive distribution size: find a > 0 such that

$$Prob(|Y_k - \hat{Y}_k| < a) = 95\%$$

- (3) distribution of Y_k : find PDF of Y_k
- solving (3) readily solves (1) and (2)

Bayesian approach for expert-based online learning

assume

- the following conditional distribution for ith expert is parameterized by $\theta_{i,k} \in \Theta$

$$p_{i,k}(y(t_k)|x(t_k),x(t_{k-1}),\ldots,y(t_{k-1}),y(t_{k-2}),\ldots)=p_{i,k}(y(t_k);x(t_k),\theta_{i,k})$$

i.e., it depends only on the current input $x(t_k)$ and $heta_{i,k}$

ullet we update $heta_{i,k+1}$ from $heta_{i,k}$ after observing true $y(t_k)$ using Bayesian rule

$$p(w; \theta_{i,k+1}) := p(w|y(t_k); x(t_k), \theta_{i,k}) = \frac{p(y(t_k)|w, x(t_k))p(w; \theta_{i,k})}{\int p(y(t_k)|w, x(t_k))p(w; \theta_{i,k})dw}$$

• if $p(\cdot; \theta)$ is conjugate prior, we can update $\theta_{i,k}$ efficiently (within fraction of milliseconds) in online matter, i.e., as stream data comes in

MUE for expert-based online learning

reminder: online learning method based on expert advice is given by

$$g_k = w_{1,k} f_{1,k} + w_{2,k} f_{2,k} + \dots + w_{p,k} f_{p,k} = \sum_{i=1}^p w_{i,k} f_{i,k}$$

- uncertainty for $f_{i,k}$ modeled by distribution parameterized by $\theta_{i,k}$, *i.e.*, $p(\gamma; \theta_{i,k})$; γ is random variable
- we first evaluate the predictive distribution

$$p_{i,k}(y(t_k); x(t_k)) = \int p(y; x(t_k), \gamma) p(\gamma; \theta_{i,k}) d\gamma$$

ullet problem to solve: evaluate distribution of g_k given those of $f_{i,k}$

MUE for expert-based online learning

ullet independent case: if $p_{1,k},\ldots,p_{p,k}$ are (statistically) independent, then PDF of $g_k(x(t_k))$ can be calculated by

$$\frac{p_{1,k}(y/w_{1,k};x(t_k))}{w_{1,k}} \star \cdots \star \frac{p_{p,k}(y/w_{p,k};x(t_k))}{w_{p,k}}$$

• Gaussian case: $p_{1,k}, \ldots, p_{p,k}$ are Gaussians with correlation coefficient matrixa R, i.e.,

$$R = \begin{bmatrix} 1 & \rho_{1,2} & \rho_{1,3} & \cdots & \rho_{1,p} \\ \rho_{1,2} & 1 & \rho_{2,3} & \cdots & \rho_{2,p} \\ \rho_{1,3} & \rho_{2,3} & 1 & \cdots & \rho_{3,p} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \rho_{1,p} & \rho_{2,p} & \rho_{3,p} & \cdots & 1 \end{bmatrix} \in \mathbf{R}^{p \times p}$$

- then g_k is also Gaussian

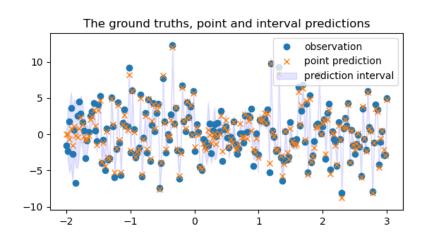
$$\mathcal{N}(w_k^T \mu_k(x(t_k)), w_k^T \operatorname{\mathbf{diag}}(\sigma_k(x(t_k))) R \operatorname{\mathbf{diag}}(\sigma_k(x(t_k))) w_k)$$

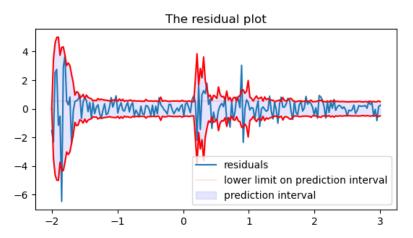
where

$$w_k = \begin{bmatrix} w_{1,k} & \cdots & w_{p,k} \end{bmatrix}^T \in \mathbf{R}^p$$

$$\mu_k(x(t_k)) = \begin{bmatrix} \mu_{1,k}(x(t_k)) & \cdots & \mu_{p,k}(x(t_k)) \end{bmatrix}^T \in \mathbf{R}^p$$

$$\sigma_k(x(t_k)) = \begin{bmatrix} \sigma_{1,k}(x(t_k)) & \cdots & \sigma_{p,k}(x(t_k)) \end{bmatrix}^T \in \mathbf{R}^p$$





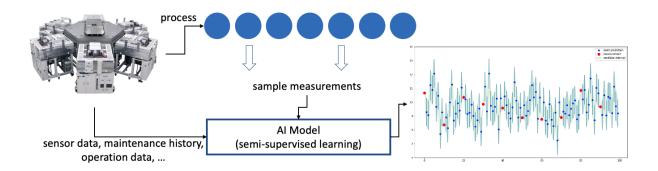
Time-series Learning Applications in Manufacturing

Processed material measurement prediction

- in many cases, we cannot measure all processed materials for fundamental reasons
 - measurement equipment is too expensive
 - no room in the factory for many measurement equipment
 - measuring every materials hinders production speed inducing low throughput
- thus, we do sampling (with very low smapling rate)
 - in semiconductor manufacturing line, avarage sampling rate is less than 1%
- problem: we want to predict the measurement of unmeasured material using indirect signals such as
 - sensor data, maintenance history, operation data, . . .

Processed material measurement prediction

- difficulties
 - concept drift/shift due to maintenance
 - data becomes stale quickly
- online learning method based on expert advice is used for the solution
- MUE provides the uncertainty level of our prediction
 - process engineers can judge when they can trust the predictions
 - we can monitor performance degradation



Root cause analysis by anomaly detection

- background: statistical process control (SPC)
 - conventional old method used in manufacturing (since 1950's)
 - monitor measurement and alert when things go wrong
 - things go wrong defined by rules; examples:
 - * measument out of $(\mu 3\sigma, \mu + 3\sigma)$,
 - * three consecutive measurements out of $(\mu-2\sigma,\mu+2\sigma)$
- our problem: when SPC alarm goes off, find the responsible (chamber in) equipment

Root cause analysis by anomaly detection

- two methods exist: (1) segment anomaly detection and (2) sequence anomaly detection
- two types of data exist: (1) sensor data and (2) processed material measurement data
- problems: given time-series data $x_e(t_0), x_e(t_1), \ldots$ for each entity $e \in E$ (entity refers to equipment, chamber, station, etc.)
 - find entity e that shows abnormal behavior using segment anomaly detection
 - find entiry e that is different from other entities using sequence anomaly detection

Conclusion

- time-series learning and anomaly detection occur at various places in the field of industrial AI applications
- concept drift and data noise make them very challenging, but we have working solutions already
- lots of room for improvement or using other ML methods including DL
- lots of applications other than the ones shown today
 - yield prediction, failure pattern analysis, predictive maintenance, process control, etc.
- Please join us to change the world by innovating industry with modern AI algorithms!